lunes, 23 de enero de 2012

Los incidentes del LHC y la inmortalidad cuántica

Observación y función de onda son dos de los elementos de más sinuosa interpretación ontológica en el ámbito de la mecánica cuántica, y sobre los que el debate filosófico no cesa. Son múltiples los experimentos mentales concebidos a colación de la traslación a nivel macroscópico de fenómenos cuánticos en los que los citados conceptos juegan un papel central. El gato de Schrödinger es posiblemente el más conocido a nivel popular, y sobre la base del mismo se han construido escenarios más complejos en los que la participación de observadores adicionales pone a prueba la sutileza de los conceptos mencionados. Por ejemplo, ya comentamos hace tiempo el experimento del amigo de Wigner, una especie de versión matrioshka del gato de Schrödinger en el que se construye una cadena de observadores conscientes en cajas concéntricas, y que pone el acento en la relación entre consciencia y observación. Otro experimento relacionado con este extremo es el denominado suicidio cuántico.
El experimento del gato de Schrödinger
El experimento del gato de Schrödinger
La disposición de este experimento puede variar, pero para simplificar podemos imaginarnos que sustituimos al gato de Schrödinger por el propio Schrödinger, y que observamos el experimento desde su punto de vista. Supongamos por ejemplo que lo que hace Schrödinger es activar un dispositivo que incorpora un generador cuántico de números aleatorios que provocará o no el disparo de un cierto dispositivo letal incluido en la caja. El bueno de Schrödinger tiene una cierta probabilidad de sobrevivir, pero si repite el experimento una y otra vez la ruleta cuántica terminará por tocarle y su existencia tocará a su fin… o no. Y es que de acuerdo con la interpretación de los múltiples universos, cada vez que se activa el dispositivo se produce una ramificación en un universo en el que Schrödinger muere y otro en el que sobrevive. Es únicamente en este segundo universo en el que Schrödinger puede jugar de nuevo, y en el que se produce una nueva bifurcación. Eso quiere decir que existe un universo en el que –para incredulidad de Schrödinger, que llegará a sentirse invulnerable– siempre sobrevive. En este caso se puede hablar apropiadamente de inmortalidad cuántica. Nótese la reminiscencia antrópica del experimento, ya que el razonamiento sobre la propia existencia requiere que se sobreviva al experimento.
LHC black hole
Credit: Ecuador Ciencia
Viene todo esto a cuento de un comentario en Accelerating Future acerca de los nuevos problemas detectados en el LHC y que una vez más provocan un retraso en su puesta en funcionamiento. Concretamente, en esta ocasión se han detectado dos fugas entre el circuito de helio y el aislamiento de vacío, lo que en principio provocará que el reinicio del LHC no se produzca hasta mediados de noviembre. Recordemos que este es el tercer incidente serio que afecta a la fecha de entrada en estado operacional del LHC, tras la explosión de la envoltura criostática de uno de los gigantescos imanes cruadrupolos el 27 de marzo de 2007, y de un escape masivo de helio líquido el 19 de septiembre de 2008. Estos incidentes en modo alguno comprometen la seguridad del LHC, y de hecho no tienen nada que ver con los hipotéticos riesgos existenciales (e.g., creación de microagujeros negros estables, materia extraña, etc.) del mismo, cuidadosamente estudiados y descartados. No obstante, si hay alguien que aún abriga algún temor (o está deseando hacerlo), aquí puede encontrar una fuente adicional de inquietud: si el LHC fuera un dispositivo que desencadenara el Apocalipsis una vez activado, y de ser correcta la interpretación de los múltiples universos de la mecánica cuántica, estaríamos en la misma disposición que Schrödinger en el experimento del suicidio cuántico. Existiría entonces un universo en el que veríamos que el LHC fallaría persistentemente (en los universos en los que no fallara cesaría nuestra existencia). La ocurrencia de nuevos incidentes -tanto más si estos son cada vez más improbables- que continuaran retrasando la plena operatividad del LHC podría hacer que alguien se planteara si no estamos en la línea de universo “afortunada” (eso, y que los ingenieros del CERN serían como los mecánicos de Fernando Alonso, claro).
Si alguien ha llegado a inquietarse realmente con lo anterior, puede reconfortarse en el hecho de que está sujeto a la interpretación de los múltiples universos, de que lo acontecido hasta ahora no entra dentro de lo excepcional, y de que la puesta en marcha del LHC está prevista para otoño de este año, por lo que en el peor caso tenemos todo el verano por delante.

martes, 25 de octubre de 2011

Que es la teoria de cuerdas?

  Vivimos en un universo asombrosamente complejo. Los seres humanos somos curiosos por naturaleza, y una y otra vez nos hemos preguntado--- ¿porqué estamos aquí? ¿De dónde venimos, y de donde proviene el mundo? ¿De qué está hecho el mundo? Somos privilegiados por vivir en una época en la cual nos hemos acercado bastante a algunas de las respuestas. La teoría de cuerdas es nuestro intento más reciente por responder la última de estas preguntas.
Así que, ¿de qué está hecho el mundo? La materia ordinaria está compuesta de átomos, los cuales a su vez están formados de sólo tres componentes básicos: electrones girando alrededor de un núcleo compuesto de neutrones y protones. El electrón es en verdad una partícula fundamental (pertenece a una familia de partículas llamadas leptones); pero los neutrones y protones están hechos de partículas más pequeñas, llamadas quarks. Los quarks, hasta donde sabemos, son realmente elementales.
La suma de nuestros conocimientos actuales sobre la composición subatómica del universo se conoce como el modelo estándar de la física de partículas. Este describe tanto a los "ladrillos" fundamentales de los cuales está constituido el mundo, como las fuerzas a través de las cuales dichos ladrillos interactúan. Existen doce "ladrillos" básicos. Seis de ellos son quarks--- y tienen nombres curiosos: arriba, abajo, encanto, extraño, fondo y cima. (Un protón, por ejemplo, está formado por dos quarks arriba y uno abajo.) Los otros seis son leptones--- estos incluyen al electrón y a sus dos hermanos más pesados, el muón y el tauón, así como a tres neutrinos.
Existen cuatro fuerzas fundamentales en el universo: la gravedad, el electromagnetismo, y las interacciones débil y fuerte. Cada una de estas es producida por partículas fundamentales que actúan como portadoras de la fuerza. El ejemplo más familiar es el fotón, una partícula de luz, que es la mediadora de las fuerzas electromagnéticas. (Esto quiere decir que, por ejemplo, cuando un imán atrae a un clavo, es porque ambos objetos están intercambiando fotones.) El gravitón es la partícula asociada con la gravedad. La interacción fuerte es producida por ocho partículas conocidas como gluones. (Yo prefiero llamarlos "pegamoides"!) La interacción débil, por último, es transmitida por tres partículas, los bosones W+, W- , y Z.
El modelo estándar describe el comportamiento de todas estas partículas y fuerzas con una precisión impecable; pero con una excepción notoria: la gravedad. Por razones técnicas, la fuerza de gravedad, la más familiar en nuestra vida diaria, ha resultado muy difícil de describir a nivel microscópico. Por muchos años este ha sido uno de los problemas más importantes en la física teórica--- formular una teoría cuántica de la gravedad.
En las últimas décadas, la teoría de cuerdas ha aparecido como uno de los candidatos más prometedores para ser una teoría microscópica de la gravedad. Y es infinitamente más ambiciosa: pretende ser una descripción completa, unificada, y consistente de la estructura fundamental de nuestro universo. (Por esta razón ocasionalmente se le otorga el arrogante título de "teoría de todo".)
La idea esencial detrás de la teoría de cuerdas es la siguiente: todas las diversas partículas "fundamentales" del modelo estándar son en realidad solo manifestaciones diferentes de un objeto básico: una cuerda. ¿Cómo puede ser esto? Bien, pues normalmente nos imaginaríamos que un electrón, por ejemplo, es un "puntito", sin estructura interna alguna. Un punto no puede hacer nada más que moverse. Pero, si la teoría de cuerdas es correcta, utilizando un "microscopio" muy potente nos daríamos cuenta que el electrón no es en realidad un punto, sino un pequeño "lazo", una cuerdita. Una cuerda puede hacer algo además de moverse--- puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, desde lejos, incapaces de discernir que se trata realmente de una cuerda, vemos un electrón. Pero si oscila de otra manera, entonces vemos un fotón, o un quark, o cualquier otra de las partículas del modelo estándar. De manera que, si la teoría de cuerdas es correcta, ¡el mundo entero está hecho solo de cuerdas!
Quizás lo más sorprendente acerca de la teoría de cuerdas es que una idea tan sencilla funciona--- es posible obtener (una extensión de) el modelo estándar (el cual ha sido verificado experimentalmente con una precisión extraordinaria) a partir de una teoría de cuerdas. Pero es importante aclarar que, hasta el momento, no existe evidencia experimental alguna de que la teoría de cuerdas en sí sea la descripción correcta del mundo que nos rodea. Esto se debe principalmente al hecho de que la teoría de cuerdas está aún en etapa de desarrollo. Conocemos algunas de sus partes; pero todavía no su estructura completa, y por lo tanto no podemos aún hacer predicciones concretas. En años recientes han habido muchos avances extraordinariamente importantes y alentadores, los cuales han mejorado radicalmente nuestra comprensión de la teoría.
  Si quieres saber más, visita las páginas que indico a continuación. También te recomiendo ampliamente el libro de divulgación "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for The Ultimate Theory" (W. W. Norton & Company), escrito por Brian Greene, un teórico de cuerdas reconocido.

martes, 13 de septiembre de 2011

La Teoría Cuántica

La Teoría Cuántica, una aproximación al universo probable

Es un conjunto de nuevas ideas que explican procesos incomprensibles para la física de los objetos


La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes. Su marco de aplicación se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica, en la física de nuevos materiales, en la física de altas energías, en el diseño de instrumentación médica, en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. La Teoría Cuántica es una teoría netamente probabilista: describe la probabilidad de que un suceso dado acontezca en un momento determinado, sin especificar cuándo ocurrirá. A diferencia de lo que ocurre en la Física Clásica, en la Teoría Cuántica la probabilidad posee un valor objetivo esencial, y no se halla supeditada al estado de conocimiento del sujeto, sino que, en cierto modo, lo determina. Por Mario Toboso.



La Teoría Cuántica, una aproximación al universo probable
La Teoría Cuántica es uno de los pilares fundamentales de la Física actual. Se trata de una teoría que reúne un formalismo matemático y conceptual, y recoge un conjunto de nuevas ideas introducidas a lo largo del primer tercio del siglo XX, para dar explicación a procesos cuya comprensión se hallaba en conflicto con las concepciones físicas vigentes.

Las ideas que sustentan la Teoría Cuántica surgieron, pues, como alternativa al tratar de explicar el comportamiento de sistemas en los que el aparato conceptual de la Física Clásica se mostraba insuficiente. Es decir, una serie de observaciones empíricas cuya explicación no era abordable a través de los métodos existentes, propició la aparición de las nuevas ideas.

Hay que destacar el fuerte enfrentamiento que surgió entre las ideas de la Física Cuántica, y aquéllas válidas hasta entonces, digamos de la Física Clásica. Lo cual se agudiza aún más si se tiene en cuenta el notable éxito experimental que éstas habían mostrado a lo largo del siglo XIX, apoyándose básicamente en la mecánica de Newton y la teoría electromagnética de Maxwell (1865).

“Dos nubecillas”

Era tal el grado de satisfacción de la comunidad científica que algunos físicos, entre ellos uno de los más ilustres del siglo XIX, William Thompson (Lord Kelvin), llegó a afirmar:

Hoy día la Física forma, esencialmente, un conjunto perfectamente armonioso, ¡un conjunto prácticamente acabado! ... Aun quedan “dos nubecillas” que oscurecen el esplendor de este conjunto. La primera es el resultado negativo del experimento de Michelson-Morley. La segunda, las profundas discrepancias entre la experiencia y la Ley de Rayleigh-Jeans.

La disipación de la primera de esas “dos nubecillas” condujo a la creación de la Teoría Especial de la Relatividad por Einstein (1905), es decir, al hundimiento de los conceptos absolutos de espacio y tiempo, propios de la mecánica de Newton, y a la introducción del “relativismo” en la descripción física de la realidad. La segunda “nubecilla” descargó la tormenta de las primeras ideas cuánticas, debidas al físico alemán Max Planck (1900).

El origen de la Teoría Cuántica

¿Qué pretendía explicar, de manera tan poco afortunada, la Ley de Rayleigh-Jeans (1899)? Un fenómeno físico denominado radiación del cuerpo negro, es decir, el proceso que describe la interacción entre la materia y la radiación, el modo en que la materia intercambia energía, emitiéndola o absorbiéndola, con una fuente de radiación. Pero además de la Ley de Rayleigh-Jeans había otra ley, la Ley de Wien (1893), que pretendía también explicar el mismo fenómeno.

La Ley de Wien daba una explicación experimental correcta si la frecuencia de la radiación es alta, pero fallaba para frecuencias bajas. Por su parte, la Ley de Rayleigh-Jeans daba una explicación experimental correcta si la frecuencia de la radiación es baja, pero fallaba para frecuencias altas.

La frecuencia es una de las características que definen la radiación, y en general cualquier fenómeno en el que intervengan ondas. Puede interpretarse la frecuencia como el número de oscilaciones por unidad de tiempo. Toda la gama de posibles frecuencias para una radiación en la Naturaleza se hallan contenidas en el espectro electromagnético, el cual, según el valor de la frecuencia elegida determina un tipo u otro de radiación.

En 1900, Max Planck puso la primera piedra del edificio de la Teoría Cuántica. Postuló una ley (la Ley de Planck que explicaba de manera unificada la radiación del cuerpo negro, a través de todo el espectro de frecuencias.

La hipótesis de Planck

¿Qué aportaba la ley de Planck que no se hallase ya implícito en las leyes de Wien y de Rayleigh-Jeans? Un ingrediente tan importante como novedoso. Tanto que es el responsable de la primera gran crisis provocada por la Teoría Cuántica sobre el marco conceptual de la Física Clásica. Ésta suponía que el intercambio de energía entre la radiación y la materia ocurría a través de un proceso continuo, es decir, una radiación de frecuencia f podía ceder cualquier cantidad de energía al ser absorbida por la materia.

Lo que postuló Planck al introducir su ley es que la única manera de obtener una fórmula experimentalmente correcta exigía la novedosa y atrevida suposición de que dicho intercambio de energía debía suceder de una manera discontinua, es decir, a través de la emisión y absorción de cantidades discretas de energía, que hoy denominamos “quantums” de radiación. La cantidad de energía E propia de un quantum de radiación de frecuencia f se obtiene mediante la relación de Planck: E = h x f, siendo h la constante universal de Planck = 6’62 x 10 (expo-34) (unidades de “acción”).

Puede entenderse la relación de Planck diciendo que cualquier radiación de frecuencia f se comporta como una corriente de partículas, los quantums, cada una de ellas transportando una energía E = h x f, que pueden ser emitidas o absorbidas por la materia.

La hipótesis de Planck otorga un carácter corpuscular, material, a un fenómeno tradicionalmente ondulatorio, como la radiación. Pero lo que será más importante, supone el paso de una concepción continuista de la Naturaleza a una discontinuista, que se pone especialmente de manifiesto en el estudio de la estructura de los átomos, en los que los electrones sólo pueden tener un conjunto discreto y discontinuo de valores de energía.

La hipótesis de Planck quedó confirmada experimentalmente, no sólo en el proceso de radiación del cuerpo negro, a raíz de cuya explicación surgió, sino también en las explicaciones del efecto fotoeléctrico, debida a Einstein (1905), y del efecto Compton, debida a Arthur Compton (1923).

Marco de aplicación de la Teoría Cuántica

El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano. De manera que la Teoría Cuántica se extiende con éxito a contextos muy diferentes, lo que refuerza su validez.

Pero, ¿por qué falla la teoría clásica en su intento de explicar los fenómenos del micromundo? ¿No se trata al fin y al cabo de una simple diferencia de escalas entre lo grande y lo pequeño, relativa al tamaño de los sistemas? La respuesta es negativa. Pensemos que no siempre resulta posible modelar un mismo sistema a diferentes escalas para estudiar sus propiedades.

Para ver que la variación de escalas es un proceso con ciertas limitaciones intrínsecas, supongamos que queremos realizar estudios hidrodinámicos relativos al movimiento de corrientes marinas. En determinadas condiciones, podríamos realizar un modelo a escala lo suficientemente completo, que no dejase fuera factores esenciales del fenómeno. A efectos prácticos una reducción de escala puede resultar lo suficientemente descriptiva.

Pero si reducimos la escala de manera reiterada pasaremos sucesivamente por situaciones que se corresponderán en menor medida con el caso real. Hasta llegar finalmente a la propia esencia de la materia sometida a estudio, la molécula de agua, que obviamente no admite un tratamiento hidrodinámico, y habremos de acudir a otro tipo de teoría, una teoría de tipo molecular. Es decir, en las sucesivas reducciones de escala se han ido perdiendo efectos y procesos generados por el aglutinamiento de las moléculas.

De manera similar, puede pensarse que una de las razones por las que la Física Clásica no es aplicable a los fenómenos atómicos, es que hemos reducido la escala hasta llegar a un ámbito de la realidad “demasiado esencial” y se hace necesario, al igual que en el ejemplo anterior, un cambio de teoría. Y de hecho, así sucede: la Teoría Cuántica estudia los aspectos últimos de la substancia, los constituyentes más esenciales de la materia (las denominadas “partículas elementales”) y la propia naturaleza de la radiación.

Albert Einstein
Albert Einstein
Cuándo entra en juego la Teoría Cuántica

Debemos asumir, pues, el carácter absoluto de la pequeñez de los sistemas a los que se aplica la Teoría Cuántica. Es decir, la cualidad “pequeño” o “cuántico” deja de ser relativa al tamaño del sistema, y adquiere un carácter absoluto. Y ¿qué nos indica si un sistema debe ser considerado “pequeño”, y estudiado por medio de la Teoría Cuántica? Hay una “regla”, un “patrón de medida” que se encarga de esto, pero no se trata de una regla calibrada en unidades de longitud, sino en unidades de otra magnitud física importante denominada “acción”.

La acción es una magnitud física, al igual que lo son la longitud, el tiempo, la velocidad, la energía, la temperatura, la potencia, la corriente eléctrica, la fuerza, etc., aunque menos conocida. Y al igual que la temperatura indica la cualidad de frío o caliente del sistema, y la velocidad su cualidad de reposo o movimiento, la acción indica la cualidad de pequeño (cuántico) o grande (clásico) del sistema. Como la energía, o una longitud, todo sistema posee también una acción que lo caracteriza.

Esta acción característica, A, se obtiene de la siguiente multiplicación de magnitudes: A = P x L, donde P representa la cantidad de movimiento característica del sistema (el producto de su masa por su velocidad) y L su “longitud” característica. La unidad de esa “regla” que mencionábamos, con la que medimos la acción de los sistemas, es la constante de Planck, h. Si el valor de la acción característica del sistema es del orden de la constante de Planck deberemos utilizar necesariamente la Teoría Cuántica a la hora de estudiarlo.

Al contrario, si h es muy pequeña comparada con la acción típica del sistema podremos estudiarlo a través de los métodos de la teoría clásica. Es decir: Si A es del orden de h debemos estudiar el sistema según la Teoría Cuántica. Si A es mucho mayor que h, podemos estudiarlo por medio de la Física Clásica.

Dos ejemplos: partículas y planetas

Veamos dos ejemplos de acción característica en dos sistemas diferentes, aunque análogos:

1. El electrón orbitando en torno al núcleo en el nivel más bajo de energía del átomo de hidrógeno.

Vamos a calcular el orden de magnitud del producto P x L. P representa el producto de la masa del electrón por su velocidad orbital, esto es P = 10 (exp-31) (masa) x 10 (exp 6) (velocidad) = 10 (exp-25) (cantidad de movimiento). El valor característico de L corresponde al radio de la órbita, esto es, L = 10 (expo-10) (longitud). Realizamos ahora el producto P x L para hallar la magnitud de la “acción” característica asociada a este proceso: A1 = Px L = 10 (expo-25) x 10 (expo-10) = 10 (expo-35) (acción).

2. El planeta Júpiter orbitando en torno al Sol (consideramos la órbita circular, para simplificar).

Para este segundo ejemplo, realizamos cálculos análogos a los anteriores. Primeramente la cantidad de movimiento P, multiplicando la masa de Júpiter por su velocidad orbital: P = 10 (expo 26) (masa) x 10 (expo 4) (velocidad) = 10 (expo 30) (cantidad de movimiento). Igualmente, la longitud característica será la distancia orbital media: L = 10 (expo 11) (longitud). La magnitud de la acción característica en este segundo caso será: A2 = 10 (expo 30) x 10 (expo 11) = 10 (expo 41) (acción).

Si comparamos estos dos resultados con el orden de magnitud de la constante de Planck tenemos:

h = 10 (expo-34)
A1 = 10 (expo -35)
A2 = 10 (expo 41)

Vemos que para el caso 1 (electrón orbitando en un átomo de hidrógeno) la proximidad en los órdenes de magnitud sugiere un tratamiento cuántico del sistema, que debe estimarse como “pequeño” en el sentido que indicábamos anteriormente, en términos de la constante de Planck, considerada como “patrón” de medida. Al contrario, entre el caso 2 (Júpiter en órbita en torno al Sol) y la constante de Planck hay una diferencia de 75 órdenes de magnitud, lo que indica que el sistema es manifiestamente “grande”, medido en unidades de h, y no requiere un estudio basado en la Teoría Cuántica.

La constante de Planck tiene un valor muy, muy pequeño. Veámoslo explícitamente:

h = 0’ 000000000000000000000000000000000662 (unidades de acción)

El primer dígito diferente de cero aparece en la trigésimo cuarta cifra decimal. La pequeñez extrema de h provoca que no resulte fácil descubrir los aspectos cuánticos de la realidad, que permanecieron ocultos a la Física hasta el siglo XX. Allá donde no sea necesaria la Teoría Cuántica, la teoría clásica ofrece descripciones suficientemente exactas de los procesos, como en el caso del movimiento de los planetas, según acabamos de ver.

viernes, 2 de septiembre de 2011

Entrada de prueba

esta es una entrada de prueba en breve empezaremos a publicar conteido de interes general.